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SUMMARY 
An electric field and a deformation constitute a controllable state if they can be maintained in every homogeneous, 
isotropic, elastic dielectric without the body force and distributed charge. The controllable states possible for small 
finite theories of compressible elastic dielectrics are determined. Also obtained are the controllable states of the classical 
electrostriction theory. 

1. Introduction 

A controllable state is defined as one in which a deformation mapping and an electric field are 
prescribed at the outset, and then it is shown that such a combination satisfies all the constitutive 
and field equations without the body force or distributed charge in every homogeneous, 
isotropic, elastic dielectric. The surface tractions and the applied electric field required to 
maintain such a state are then calculated at the boundary. For instance, a pure homogeneous 
deformation interacted with a homogeneous non-zero electric field always constitutes a 
controllable state because constitutive equations furnish constant stresses and constant 
dielectric displacement field which will satisfy the field equations identically irrespective of the 
nature of response coefficients characterizing the material. 

When the form of the stored energy function is purely arbitrary, there is a large number of 
controllable states for homogeneous, isotropic, incompressible elastic dielectrics [1] involving 
interaction of non=homogeneous deformations with non uniform electric fields. However, 
Singh [-2] has proved that when the dielectric is.compressible, the only possible controllable 
states are those for which the electric field and the strains are both constant. 

Considerable analytical simplification can be gained by using suitable approximations to the 
stored energy function [3]. The first order finite approximation,  which reduces to Mooney 
form [-4] in the absence of electrical effects, can be applied to solve problems in which the 
principal stretches are small and the electric field strength sufficiently weak. It is interesting to 
observe that the number of controllable states for incompressible dielectrics is considerably 
larger with approximate forms of the stored energy function than what one obtains with a 
purely arbitrary form [-3]. 

In the present work we propose to extend the range of investigation of controllable states for 
special forms of the stored energy function. In Section 5, we proceed to determine all possible 
such states for first order small finite theory of homogeneous, compressible, isotropic, elastic 
dielectrics. We prove that only homogeneous states are controllable. Therefore the complete 
class of controllable solutions for the first order finite theory is equivalent to that for the general 
theory. This, however, is not the case when the dielectric is incompressible [3]. 

The latter part of this paper is devoted to finding controllable states in the infinitesimal theory 
of elastic dielectrics, known as classical linear electrostriction [-5], [6]. Without the electrical 
effects, the controllable deformations of the infinitesimal theory of elasticity are given by the 
displacement fields which are harmonic and whose divergence is uniform [7]. We have demon- 
strated in Sections 6 and 7 that when such displacement fields are interacted with uniform 
electric fields, they constitute states that are controllable in coupled as well as uncoupled 
theories of electrostriction. Furthermore,  we prove that such states are the only ones control- 
lable. 
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Since a controllable state does not require beforehand the knowledge of the functional form 
of the stored energy function, a comparison of theoretical and experimental results could be 
used to determine the response coefficients itself for the dielectric considered. Whereas this 
important feature of controllable deformations has been utilized extensively in finite elasticity 
[8], the experimentation of similar nature has not been attempted for elastic dielectrics so far. 

2. Continuum electroelastostatics 

We consider a continuous, homogeneous, isotropic, elastic dielectric solid. The continuum is 
deformed and polarized by applied mechanical forces and an applied electric field. The de- 
formation mapping is described by 

x, = x , (Xa,  X2, X3), i = 1, 2, 3,  (2.1) 

where x~ and XA denote, respectively, the coordinates of a generic particle in the deformed and 
undeformed configurations, both referred to a fixed rectangular Cartesian system. 

When there is no distributed charge, the field equations valid both inside and outside the 
dielectric are [3]: 

Ei, j = Ej, i ,  (2.2) 

Di, i = O, (2.3) 
O'ij ' j = O, (2.4) 

and 
(2.5) ~ij ~ ~ji " 

Constitutive relations for free space are: 

D i = (. E l ,  (2.6) 
E 

a o = Mij = EEiEj  - ~ E k E k f i j ,  (2.7) 

whereas inside the dielectric body, 

2po  W aw ow 
Di = i~ 3 ~ ~i 4 (~ij -~- ~ gij A- -~6 gij; E j ,  (2.8) 

aiJ = I-~-3 + I1 g l j -  ~ 2  gij 

OW a W  Q W  [gikEkEj  + 9jkEkEi] + 13 -#i g,j + E, Ej + 

OW 2 2 I + ~ 6  [g l kEkE j+  OjkEkEi+ gikgj, EkE,]  ~ .  (2.9) 

Here gq denotes the Finger strain tensor 

c3xi c3xj (2.10) 
g i j -  #XA ~XA' 

and the strain energy function W of the elastic dielectric depends upon the invariants : 

11 = gii,  Iz = g~ , 13 = E i E i ,  

14 = g o E i E j ,  15 = g~EiE j  , 16 = det gij . (2.11) 
In the above equations, E i represents the electric field strength, Dg the dielectric displacement 

field, aij the stress tensor which accounts for all electromechanical effects except the gravi- 
tational and inertial body forces that we shall set to zero in the work to follow. The constant e 
is the dielectric constant of free space, Po the mass density in the undeformed state, and Mgj 
denotes the Maxwell stress tensor present everywhere outside the dielectric. 
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3. Approximate theories 

Assuming the stored energy function W(Ia,/2 . . . .  ,16) as a polynomial in its arguments, we can 
approximate W to any desired order in the principal extensions and powers of the electric 
field by neglecting terms above an appropriate degree in the polynomial expansion [3]. 

3.1. First approximation 

It is obtained by neglecting in the polynomial expansion of W terms involving powers higher 
than second in principal extensions and the electric field components. Constitutive equations 
(2.8) and (2.9) then take the form [31: 

D i = 2p [ (a 3 - ar cSij + as J1 (~ij ~- a4 g i j l  E j ,  (3.1) 
and 

aij = 2p{(a1+(al+ 232)J a +a5141glj-alg 2 

+ (a3 - a4) Ei Ej + a4 [ g~k Ek Ej + gjk ek Eil }, (3.2) 

where p denotes the mass density of the dielectric in the deformed state, al, a2, ..., a s are 
material constants, and where Jt = 11 - 3 .  

3.2. Classical coupled theory of electrostriction 

The constitutive equations governing such a theory [31 are: 

D, po(bl ~ b2e~j)Ej, (3.3) = (~ij~-~bl ekkt~ij-[- 

(Tij = [9 0 [C 1 ekkf~ij q- C 2 eij ~- b~ EkEk(~ij + �89 + b2)E~Ej] , (3.4) 

where ei~ =�89 j + uj, i), and where b~, b2, Cl, C 2 are all material constants. These constitutive 
equations can be derived by neglecting in the polynomial expansion for W terms containing 
powers higher than second in the displacement gradients ~ui/~x j and the electric field compo- 
nents E~. 

3.3. Classical uncoupled theory of electrostriction 

This theory, which is used more than often in literature in solving boundary value problems 
that arise in electroelasticity [51, [61, is obtained by neglecting the coupling terms ekkE i and 
eijEj in Eqn. (3.3) to yield: 

ffij ---- ~" ekk 6ij d- 2 # elj + a E k E k Oij + b E i E j  (3.5) 
Di = kEi ' (3.6) 

where 2,/~, a, b and k=  Po 1 (2b-  a) are material constants. 

4. Controllable states 

We first select the theory of which the controllable states are desired. Suppose we are given a 
positive definite matrix gij which satisfies compatibility conditions of strain and an electric 
field which is conservative. Using the constitutive equations of the theory selected, we find the 
corresponding stress aij and the dielectric displacement D~. If it so happens that a~j so obtained 
satisfy the stress equation of equilibrium a~j,j=O, and D i meet the flux field equation Di, i=0  
independent of the material constants involved in the constitutive equations, then the state 
represented by the strain matrix g~j and the electric field E i is called a controllable state. The 
importance of such states is that they can be supported without the body force or distributed 
charge in every homogeneous, isotropic, elastic dielectric obeying the theory selected. 

It is the purpose of this presentation to find all possible controllable states of first order finite 
theory as well as those of classical uncoupled and coupled theories of electrostriction described 
in Section 3. We follow the procedure developed by Ericksen [9] and Shield [10]. 
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5. Controllable states of first order finite deformation theory 

To seek restrictions on possible gij and El, we substitute from constitutive relation (3.1) and 
(3.2) into the field equations (2.3) and (2.4): 

(E~Ej t 

(g ikgkgJ~-gJkEkEi - -E igJ~  (I4giJ~ = 0 ,  ( 5 . 1 )  

+ a4\ -  7 /,~ + a s k  J / j  

and 

a3 i + a4 J / i + a5 \ ~ f - /  i = O, (5.2) 

where the Jacobian 

( < )  Po 
J = det \ 6 X A /  = p "  

Necessary and sufficient that Eqns. (5.1) and {5.2) be satisfied for any choice of the material 
constants a 1, a> ..., a s, the coefficients of each of a's should separately vanish: 

~ -  ~/ .=  0,  (5.3) 
,3 

j gij = 0,  (5.4) 
J 

o ,  (5.5) 
, J  

,J 

7., = o ,  (5.8) 

\7-/,-- o.  (5.10) 

Besides, the field E i has to be conservative" 

Ei, j = E~,i. (5.11) 

And gi~ must meet the compatibility conditions: 

Rijkl = 2LYil, kj Yjk, il--Yik, j l--  jl, ik]+gmn(AjkmAiln--AjlmAikn) = O, (5.12) 

where g~ 1 denotes the inverse of the matrix g~j, and where 

- -1  - 1  
Ai~k = glk,~ + gjk, i-- gij, k �9 

Necessary and sufficient for a positive definite symmetric tensor g~j and the field E~ to combine 
to form a controllable state is that the conditions (5.3) to (5.12) be all satisfied, 

From Eqns. (5.5) and (5.8), we obtain 
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Ei, jE j = O, 

which in view of Eqn. (5.11) gives 

(EjEj)., = O. 

Equations (5.13) and (5.7) together yield 

,J 
or 

( 1  Oxj ") Oxi 1 a (_~x~ ] Oxj 
aXj  ~XA / ~ A  + 7 aXj  \ (?'X A / a X  A = O.  

Since J # 0 and ~ OXA ] vanishes identically, we conclude that 

Xi, AA ~--" 0 . 

With Eqns. (5.4) and (5.14), 
1 
j g~jJ1,j= 0.  

Since the matrix 9ij is positive definite, Eqn. (5.16) yields 

J l , i  = 0 

169 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

or that J1 and hence 11 is constant. The Laplacian of 11 is therefore zero. That is 

~ X  B ~ X B / , A  A = O,  

o r  

Xi, AABXi, B + Xi, ABXi, AB = O . (5.17) 
In view of Eqn. (5.15), Eqn. (5.17) yields 

Xi, AB = O.  (5.18) 

The functions x~(XA) are linear in arguments XA SO that 9ij is a constant tensor. It also then 
follows that J is a constant. Using (5.8) now, we obtain 

E~, i = 0.  (5.19) 

From Eqn. (5.13) with use of Eqns. (5.11) and (5.19), we have 

0 = ( E j  E j ) ,  ii = E j, ii Ej + Ej, i Ej, i, 
= Ei, l jEj+Ej,  iEj, i, 
= Ej, iEj, i, 

thus implying that E~ is uniform. It is now readily seen that with g~j and El both constant, all the 
conditions (5.3) to (5.12) are identically satisfied. Hence, the only controllable states for first 
order finite theory of homogeneous, isotropic, compressible elastic dielectrics are homogeneous 
deformations combined with uniform electric fields. 

For any second or higher order finite approximation to W, the controllability conditions on 
glj and E~ will obviously include those for the first order approximation. Since homogeneous 
states are always controllable, it follows that for all finite theories of deformation of compres- 
sible dielectrics, including the one where the stored energy function is purely arbitrary, the 
only controllable states are homogeneous strains accompanied with uniform electric fields. 

6. Controllable states of coupled theory of electrostriction 

The constitutive equations which define this theory are (3.3) and (3.4). Substitution in the field 
equations (2,3) and (2.4) gives 
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and 
bl Ei, i +�89 1 (egkEi),i + b2 (eijEj),i = O, 

c 1 (ekk),i+C 2 (ei j ) , i+b 1 (EkEk),i+�89 +bz) (EiEj ) , j  = O. 

M.  Singh, S. K.  Trehan 

(6.1) 

(6.2) 

If eij and E~ are to combine for a controllable state, then Eqns. (6.1) and (6.2) must be satisfied 
for all values of material constants bl, b2, Cl, and c 2. Necessary and sufficient for which is that 

El, i+ 1 (ekkEi),i = O, 

(eoEj),i = O, 

(ekk),i = O, 
(eq),j = O, 

( E k E k ) , i - I - l  ( E i E j ) , j  : O ,  

(E, Ej) , j  = o .  
In addition, the electric field has to be conservative: 

E i ,  j = E j ,  i , 

and the infinitesimal strains eij must be compatible: 

eij, kl -~- ekt, i j  - -  eit, k j  - -  e k j ,  il : 0 . 

Since lelj[ "~ 1, Eqns. (6.3) and (6.5) give 

E l ,  i = O .  

Equations (6.7) and (6.8) furnish 

(EkEk),i = O. 

(6.3) 
(6.4) 
(6.5) 
(6.6) 
(6.7) 
(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

Equations (6.9), (6.11), and (6.12) require that the field E i must be uniform. The restrictions on 
strains ei~ are then only Eqns. (6.5), (6.6), and (6.10). In terms of the displacement field u, these 
conditions become 

V 2u = 0 ,  (6.13) 

and 
v ( v . . )  = o .  (6.14) 

Thus any displacement field given by Eqns. (6.13) and (6.14) when coupled with any uniform 
electric field furnishes a controllable state and such states are the only ones controllable. 

7. Controllable states of uncoupled theory of electrostrietion 

Constitutive equations that govern this theory are Eqns. (3.5) and (3.6), which when substituted 
in Eqns. (2.3) and (2.4) yield 

kEi, i = 0,  (7.1) 
and 

2 (egg),, + 21~ (eij),~ + a(EkEk),i + b(EiEj) , j  = 0.  (7.2) 

If Eqns. (7.1) and (7.2) are to hold for all possible values of k, 2, #, a, and b, then 

E l ,  i : 0 ,  (7.3) 

(egg), ~ = 0,  (7.4) 

(eij), ~ = O, (7.5) 

(EkEk),i = 0,  (7.6) 

(EIEj),j  = 0.  (7.7) 

Conditions (7.3), (7.6), and that E~ has to be conservative, require the field E~ to be uniform. 
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The displacement field u for a controllable state is once again given by Eqns. (7.4) and (7.5), 
so that 

V 2 u = 0 ,  (7.8) 
and 

V (V.u) = 0. (7.9) 

It may be remarked here that when the electric field is absent, the displacement fields for control- 
lable states in the infinitesimal theory of elasticity [7] are indeed given by Eqns. (7.8) and (7.9). 
What we have shown in Sections 6 and 7 is that in the coupled as well as uncoupled theories of 
electrostriction, the displacement fields satisfying Eqns. (7.8) and (7.9) simultaneously are still 
controllable when combined with uniform electric fields, and that states of this type are the 
only ones controllable. 
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